Qus : 2 NIMCET PYQ 2020 1 Angle of elevation of the top of the tower from 3
points (collinear) A, B and C on a road leading to the
foot of the tower are 30°, 45° and 60°, respectively.
The ratio of AB and BC is
1 \sqrt(3):1 2 \sqrt(3):2 3 1:\sqrt(3) 4 2:\sqrt(3) Go to Discussion NIMCET Previous Year PYQ NIMCET NIMCET 2020 PYQ Solution According to the given information, the figure should be as follows.
Let the height of tower = h
Qus : 5 NIMCET PYQ 2023 1
Number of point of which f(x) is not differentiable f(x)=|cosx|+3 in [-\pi, \pi]
1 2 2 3 3 4 4 None of these Go to Discussion NIMCET Previous Year PYQ NIMCET NIMCET 2023 PYQ Solution
Points of Non-Differentiability of f(x) = |\cos x| + 3
Step 1: \cos x is differentiable everywhere, but |\cos x| is not differentiable where \cos x = 0 .
Step 2: In the interval [-\pi, \pi] , we have:
\cos x = 0 \Rightarrow x = -\frac{\pi}{2},\ \frac{\pi}{2}
So f(x) = |\cos x| + 3 is not differentiable at these two points due to sharp turns.
✅ Final Answer:
\boxed{2 \text{ points}}
Qus : 6 NIMCET PYQ 2019 2 If A > 0, B > 0 and A + B = \frac{\pi}{6} , then the minimum value of tanA + tanB
1 \sqrt{3}-\sqrt{2}
2 \sqrt{3}-2\sqrt{3} 3 \frac{2}{\sqrt{3}} 4 \sqrt{2}-\sqrt{3} Go to Discussion NIMCET Previous Year PYQ NIMCET NIMCET 2019 PYQ Solution On differentiating x= tanA + tan(π/6-A)
we get :
dx/dA = sec²A-sec²(π/6-A)
now putting
dx/dA=0
we get
cos²(A) = cos²(π/6-A) so 0≤A≤π/6
therefore
A=π/6-A from here we get A = π/12 = B
so minimum value of that function is
2tanπ/12 which is equal to 2(2-√3)
Qus : 10 NIMCET PYQ 2024 4 The value of \tan \Bigg{(}\frac{\pi}{4}+\theta\Bigg{)}\tan \Bigg{(}\frac{3\pi}{4}+\theta\Bigg{)} is
1 -2 2 2 3 1 4 -1 Go to Discussion NIMCET Previous Year PYQ NIMCET NIMCET 2024 PYQ Solution
We are given:
\text{Evaluate } \tan\left(\frac{\pi}{4} + \theta\right) \cdot \tan\left(\frac{3\pi}{4} + \theta\right)
✳ Step 1: Use identity
\tan\left(A + B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
But we don’t need expansion — use known angle values:
\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta}
\tan\left(\frac{3\pi}{4} + \theta\right) = \frac{-1 + \tan\theta}{1 + \tan\theta}
✳ Step 2: Multiply
\left(\frac{1 + \tan\theta}{1 - \tan\theta}\right) \cdot \left(\frac{-1 + \tan\theta}{1 + \tan\theta}\right)
Simplify:
= \frac{(1 + \tan\theta)(-1 + \tan\theta)}{(1 - \tan\theta)(1 + \tan\theta)}
= \frac{(\tan^2\theta - 1)}{1 - \tan^2\theta} = \boxed{-1}
✅ Final Answer:
\boxed{-1}
Qus : 11 NIMCET PYQ 2024 4 If \sin x=\sin y and \cos x=\cos y , then the value of x-y is
1 \pi/4 2 n \pi/2 3 n \pi 4 2n \pi Go to Discussion NIMCET Previous Year PYQ NIMCET NIMCET 2024 PYQ Solution
Given:
\sin x = \sin y \quad \text{and} \quad \cos x = \cos y
✳ Step 1: Use the identity for sine
\sin x = \sin y \Rightarrow x = y + 2n\pi \quad \text{or} \quad x = \pi - y + 2n\pi
✳ Step 2: Use the identity for cosine
\cos x = \cos y \Rightarrow x = y + 2m\pi \quad \text{or} \quad x = -y + 2m\pi
? Combine both conditions
For both \sin x = \sin y and \cos x = \cos y to be true, the only consistent solution is:
x = y + 2n\pi \Rightarrow x - y = 2n\pi
✅ Final Answer:
\boxed{x - y = 2n\pi \quad \text{for } n \in \mathbb{Z}}
[{"qus_id":"3791","year":"2018"},{"qus_id":"3764","year":"2018"},{"qus_id":"3904","year":"2019"},{"qus_id":"3920","year":"2019"},{"qus_id":"4281","year":"2017"},{"qus_id":"4283","year":"2017"},{"qus_id":"4284","year":"2017"},{"qus_id":"4285","year":"2017"},{"qus_id":"9466","year":"2020"},{"qus_id":"9467","year":"2020"},{"qus_id":"9468","year":"2020"},{"qus_id":"9469","year":"2020"},{"qus_id":"9470","year":"2020"},{"qus_id":"9471","year":"2020"},{"qus_id":"9472","year":"2020"},{"qus_id":"9473","year":"2020"},{"qus_id":"9477","year":"2020"},{"qus_id":"10432","year":"2021"},{"qus_id":"10667","year":"2021"},{"qus_id":"10674","year":"2021"},{"qus_id":"10682","year":"2021"},{"qus_id":"10686","year":"2021"},{"qus_id":"10707","year":"2021"},{"qus_id":"11121","year":"2022"},{"qus_id":"11122","year":"2022"},{"qus_id":"11143","year":"2022"},{"qus_id":"11512","year":"2023"},{"qus_id":"11526","year":"2023"},{"qus_id":"11535","year":"2023"},{"qus_id":"11640","year":"2024"},{"qus_id":"11641","year":"2024"},{"qus_id":"10201","year":"2015"},{"qus_id":"10212","year":"2015"},{"qus_id":"10229","year":"2015"},{"qus_id":"10237","year":"2015"},{"qus_id":"10452","year":"2014"},{"qus_id":"10462","year":"2014"},{"qus_id":"10476","year":"2014"},{"qus_id":"10480","year":"2014"}]